Перейти к содержанию

Презентация на Тему Днк по Биологии

Презентация на Тему Днк по Биологии.rar
Закачек 3783
Средняя скорость 7423 Kb/s
Скачать

презентация по биологии 10 класс тема «Нуклеиновые кислоты»

Предварительный просмотр:

Подписи к слайдам:

История создания нуклеиновых кислот ДНК открыта в 1868 г швейцарским врачом И. Ф. Мишером в клеточных ядрах лейкоцитов, отсюда и название – нуклеиновая кислота (лат. « nucleus » — ядро). В 20-30-х годах XX в. определили, что ДНК – полимер ( полинуклеотид ), в эукариотических клетках она сосредоточена в хромосомах . Предполагали, что ДНК играет структурную роль. В 1944 г. группа американских бактериологов из Рокфеллеровского института во главе с О. Эвери показала, что способность пневмококков вызывать болезнь передается от одних к другим при обмене ДНК. ДНК является носителем наследственной информации .

Фридрих Фишер Швейцарский биохимик.Из остатков клеток,содержащихся в гное,он выделил вещество,в состав которого входят азот и фосфор.Учёный назвал это нуклеином ,полагая,что оно содержится лишь в ядре клетки. Позднее небелковая часть этого вещества была названа нуклеиновой кислотой

УОТСОН Джеймс Дьюи Американский биофизик, биохимик, молекулярный биолог, предложил гипотезу о том, что ДНК имеет форму двойной спирали, выяснил молекулярную структуру нуклеиновых кислот и принцип передачи наследственной информации. Лауреат Нобелевской премии 1962 года по физиологии и медицине (вместе с Фрэнсис Харри Комптоном Криком и Морисом Уилкинсом).

КРИК Френсис Харри Комптон Английский физик, биофизик, специалист в области молекулярной биологии, выяснил молекулярную структуру нуклеиновых кислот; открыв основные типы РНК, предложил теорию передачи генетического кода и показал, как происходит копирование молекул ДНК при делении клеток. в 1962 году стал лауреатом Нобелевской премии по физиологии и медицине

Нуклеиновые кислоты являются биополимерами , мономеры которых – нуклеотиды. Каждый нуклеотид состоит из 3-х частей: азотистого основания , пентозы – моносахарида , остатка фосфорной кислоты .

НУКЛЕИНОВЫЕ КИСЛОТЫ МОНОМЕРЫ — НУКЛЕОТИДЫ ДНК – дезоксирибонуклеиновая кислота РНК рибонуклеиновая кислота Состав нуклеотида в ДНК Состав нуклеотида в РНК Азотистые основания: Аденин (А) Гуанин (Г) Цитозин (Ц) Урацил (У): Рибоза Остаток фосфорной кислоты Азотистые основания: Аденин (А) Гуанин (Г) Цитозин (Ц) Тимин (Т) Дезокси- рибоза Остаток фосфорной кислоты Информационная (матричная) РНК (и-РНК) Транспортная РНК (т-РНК) Рибосомная РНК (р-РНК) Передача и хранение наследственной информации

Химическое строение азотистых оснований и углеводов

Принцип комплементарности Азотистые основания двух полинуклеотидных цепей ДНК соединяются между собой попарно при помощи водородных связей по принципу комплементарности . Пиримидиновое основание связывается с пуриновым: тимин Т с аденином А (две ВС), цитозин Ц с гуанином Г (три ВС). Таким образом, содержание Т равно содержанию А , содержание Ц равно содержанию Г . Зная последовательность нуклеотидов в одной цепи ДНК, можно расшифровать строение (первичную структуру) второй цепи. Для лучшего запоминания принципа комплементарности можно воспользоваться мнемоническим приемом : запомни словосочетания Т игр – А льбинос и Ц апля — Г олубая

Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г. Она полностью подтверждена экспериментально и сыграла исключительно важную роль в развитии молекулярной биологии и генетики

СТРУКТУРЫ ДНК И РНК ДНК

Строение и функции РНК РНК — полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Репликация ДНК Удвоение молекулы ДНК называют репликацией или редупликацией . Во время репликации часть молекулы «материнской» ДНК расплетается на две нити с помощью специального фермента , причем это достигается разрывом водородных связей между комплементарными азотистыми основаниями: аденином —тимином и гуанином – цитозином. Далее к каждому нуклеотиду разошедшихся нитей ДНК фермент ДНК-полимераза подстраивает комплементарный ему нуклеотид.

Состав и структура РНК. I этап биосинтеза белка С помощью специального белка РНК-полимеразы молекула информационной РНК строится по принципу комплементарности по участку одной нити ДНК в процессе транскрипции (первого этапа синтеза белка). Сформированная цепочка и-РНК представляет точную копию второй (нематричной) цепочки ДНК, только вместо тимина Т включен урацил У . Мнемоника : вместо Т игра – А льбиноса есть У тка – А льбинос! и-РНК

Биосинтез белка Трансляция – это перевод последовательности нуклеотидов молекулы и-РНК (матричной) в последовательность аминокислот молекулы белка. и-РНК взаимодействует с рибосомой, которая начинает двигаться по и-РНК, задерживаясь на каждом ее участке, который включает в себя два кодона (т.е. 6 нуклеотидов).

Виды РНК В клетке имеется несколько видов РНК. Все они участвуют в синтезе белка. Транспортные РНК (т-РНК) — это самые маленькие по размерам РНК (80-100 нуклеотидов). Они связывают аминокислоты и транспортируют их к месту синтеза белка. Информационные РНК (и-РНК) — они в 10 раз больше тРНК. Их функция состоит в переносе информации о структуре белка от ДНК к месту синтеза белка. Рибосомные РНК (р-РНК) — имеют наибольшие размеры молекулы(3-5 тыс.нуклеотидов), входят в состав рибосом.

Биологическая роль и-РНК и-РНК, являясь копией с определенного участка молекулы ДНК, содержит информацию о первичной структуре одного белка. Последовательность из трех нуклеотидов ( триплет или кодон ) в молекуле и-РНК (первооснова –ДНК!) кодирует определенный вид аминокислоты. Эту информацию сравнительно небольшая молекула и-РНК переносит из ядра, проходя через поры в ядерной оболочке, к рибосоме – месту синтеза белка. Поэтому и-РНК иногда называют « матричной », подчеркивая ее роль в данной процессе. Генетический код был расшифрован в 1965-1967 г.г., за что Х. Г. Корану была присуждена Нобелевская премия.

Рибосомные РНК Рибосомные РНК синтезируются в сновном в ядрышке и составляют примерно 85-90% всех РНК клетки. В комплексе с белками они входят в состав рибосом и осуществляют синтез пептидных связей между аминокислотными звеньями при биосинтезе белка. Образно говоря, рибосома – это молекулярная вычислительная машина, переводящая тексты с нуклеотидного языка ДНК и РНК на аминокислотный язык белков.

Транспортные РНК РНК, доставляющие аминокислоты к рибосоме в процессе синтеза белка, называются транспортными . Эти небольшие молекулы, форма которых напоминает лист клевера, несут на своей вершине последовательность из трех нуклеотидов. С их помощью т-РНК будут присоединяться к кодонам и-РНК по принципу комплементарности . Противоположный конец молекулы т-РНК присоединяет аминокислоту, причем только определенный вид, который соответствует его антикодону

Генетический код Наследственная информация записана в молекулах НК в виде последовательности нуклеотидов. Определенные участки молекулы ДНК и РНК (у вирусов и фагов) содержат информацию о первичной структуре одного белка и называются генами . 1 ген = 1 молекула белка Поэтому наследственную информацию, которую содержат ДНК называют генетической .

Свойства генетического кода: Универсальность Дискретность (кодовые триплеты считываются с молекулы РНК целиком) Специфичность (кодон кодирует только АК) Избыточность кода (несколько)

Признаки ДНК РНК СХОДСТВА Полинуклеотиды, мономеры которых имеют общий план строения. РАЗЛИЧИЯ: 1) Сахар дезоксирибоза рибоза 2) Азотистые основания аденин — тимин , цитозин — гуанин аденин – урацил , цитозин – гуанин 3) Структура двойная спираль одноцепочечная молекула 4) Местонахождение в клетке ядро, митохондрии и хлоропласты цитоплазма, рибосомы 5) Биологические функции хранение наследственной информации и передача ее из поколения в поколение участие в матричном биосинтезе белка на рибосоме, т.е. реализация наследственной информации Проверка правильности заполнения таблицы

Биологическое значение нуклеиновых кислот Нуклеиновые кислоты обеспечивают хранение наследственной информации в виде генетического кода, передачу ее при размножении дочерним организмам, ее реализацию при росте и развитии организма в течение жизни в виде участия в очень важном процессе – биосинтезе белков .

Итоговое тестирование 1. Молекулы ДНК представляют собой материальную основу наследственности, так как в них закодирована информация о структуре молекул а – полисахаридов б – белков в – липидов г – аминокислот 2. В состав нуклеиновых кислот НЕ входят а – азотистые основания б – остатки пентоз в – остатки фосфорной кислоты г – аминокислоты 3. Связь, возникающая между азотистыми основаниями двух комплементарных цепей ДНК, — а – ионная б – пептидная в – водородная г – сложноэфирная 4. Комплементарными основаниями НЕ является пара а – тимин — аденин б – цитозин — гуанин в – цитозин — аденин г – урацил — аденин 5. В одном из генов ДНК 100 нуклеотидов с тимином, что составляет 10% от общего количества. Сколько нуклеотидов с гуанином? а – 200 б – 400 в – 1000 г – 1800 6. Молекулы РНК, в отличие от ДНК, содержат азотистое основание а – урацил б – аденин в – гуанин г – цитозин

Итоговое тестирование 7. Благодаря репликации ДНК а – формируется приспособленность организма к среде обитания б – у особей вида возникают модификации в – появляются новые комбинации генов г – наследственная информация в полном объеме передается от материнской клетки к дочерним во время митоза 8. Молекулы и-РНК а – служат матрицей для синтеза т-РНК б – служат матрицей для синтеза белка в – доставляют аминокислоты к рибосоме г – хранят наследственную информацию клетки 9. Кодовому триплету ААТ в молекуле ДНК соответствует триплет в молекуле и-РНК а – УУА б – ТТА в – ГГЦ г – ЦЦА 10. Белок состоит из 50 аминокислотных звеньев. Число нуклеотидов в гене, в котором зашифрована первичная структура этого белка, равно а – 50 б – 100 в – 150 г – 250

Итоговое тестирование 11 . В рибосоме при биосинтезе белка располагаются два триплета и-РНК, к которым в соответствии с принципом комплементарности присоединяются антикодоны а – т-РНК б – р-РНК в – ДНК г – белка 12. Какая последовательность правильно отражает путь реализации генетической информации? а) ген – ДНК – признак – белок б) признак – белок – и-РНК – ген – ДНК в) и-РНК – ген – белок – признак г) ген – и-РНК – белок – признак 13. Собственные ДНК и РНК в эукариотической клетке содержат а – рибосомы б – лизосомы в – вакуоли г – митохондрии 14. В состав хромосом входят а – РНК и липиды б – белки и ДНК в – АТФ и т-РНК г – АТФ и глюкоза 15. Ученые, которые предположили и доказали, что молекула ДНК – двойная спираль, это а – И. Ф. Мишер и О. Эвери б – М. Ниренберг и Дж. Маттеи в – Дж. Д. Уотсон и Ф. Крик г – Р. Франклин и М. Уилкинс

Выполнение задачи на комплементарность Комплементарность – это взаимное дополнение азотистых оснований в молекуле ДНК. Задача : фрагмент цепи ДНК имеет последовательность нуклеотидов: Г Т Ц Ц А Ц Г А А Постройте по принципу комплементарности 2-ю цепочку ДНК. РЕШЕНИЕ: 1-я цепь ДНК: Г-Т-Ц-Ц-А-Ц-Г-А-А. Ц-А-Г-Г-Т-Г-Ц-Т-Т Значение комплементарности: Благодаря ей происходят реакции матричного синтеза и самоудвоение ДНК, который лежит в основе роста и размножения организмов.

Повторение и закрепление знаний: Вставьте нужные слова: В составе РНК есть сахар… В составе ДНК есть азотистые основания…; И в ДНК, и в РНК есть….; В ДНК нет азотистого основания… Структура молекулы РНК в виде… ДНК в клетках может находиться в … Функции РНК:… В составе РНК есть азотистые основания…; В составе ДНК есть сахар…; В РНК нет азотистого основания… Структура молекулы ДНК в виде… Мономерами ДНК и РНК являются…; РНК в клетках может находиться в… Функции ДНК:… (рибоза) (А,Г,Ц,Т) (А,Г,Ц,сахар, Ф ) (У) (Цепочки Нуклеотидов) (В ядре, митохондриях, хлоропластах) (Участие в синтезе белков) А,Г,Ц, (У) (дезоксирибоза) (Т) (Двойной спирали) (Нуклеотиды) (В ядре, цитоплазме, митохондриях, хлоропластах) (Хранение и передача наслед. информ.)

Проверь себя–правильные ответы Б Г В В Б А Г Б Б А В А Г Г В

Выводы Нуклеиновые кислоты: ДНК и РНК ДНК – полимер. Мономер – нуклеотид. Молекулы ДНК обладают видовой специфичностью. Молекула ДНК – двойная спираль, поддерживается водородными связями. Цепи ДНК строятся по принципу комплиментарности. Содержание ДНК в клетке постояннно. Функция ДНК – хранение и пердача наследственной информации.

Использованные источники информации Каменский А. А., Криксунов Е. А., Пасечник В. В. — Учебник Общая биология 10-11 классы – М.: Дрофа, 2006 Мамонтов С. Г., Захаров В. Б. – Общая биология: учебное пособие – М.: Высшая школа, 1986 Бабий Т. М., Беликова С. Н. – Нуклеиновые кислоты и АТФ // «Я иду на урок» // М.: «Первое сентября», 2003 ЕГЭ 2011 Биология // Учебно-тренировочные материалы для подготовки учащихся./ Г. С. Калинова, А. Н. Мягкова, В. З. Резникова. – М.: Интеллект-Центр, 2007

ДНК Днк – Дезоксирибонуклеиновая кислота.

Дезоксирибонуклеиновая кислота ДНК –биологический полимер, состоящий из двух спирально закрученных цепочек.

История открытия. В 1869 г. Фридрих Мишер, швейцарский врач биохимик, выделил нуклеиновые кислоты из ядер клеток гноя. Эти клетки содержали фосфоорганическое вещество, которое Мишер назвал «нуклеином». Изучая его состав было получено, что данное соединение носит кислотный характер и содержит белковые компоненты. Остальная часть элементарного состава представлена такими элементами, как: С,Н,О,N.

История открытия. Альтман обнаружил ортофосфорную кислоту в составе аминокислот. Именно ее он поначалу называл нуклеиновой кислотой. Пиккард в конце 19 века открыл азотистое основание – гуанин. Позже были обнаружены тимин, аденин и урацил.

История открытия. В 1912 г. Леви обнаружил, что в состав нуклеиновых кислот входит углевод пентоза. В начале 20 века был полностью изучен состав всех нуклеиновых кислот, однако вопрос об их строении оставался открытым до 50-х г. 20 века. Ф. Мишер сделал правильное предположение о том, что нуклеиновые кислоты заполняют ядро и принимают участие в оплодотворении и передаче наследственной информации.

История открытия. Однако, эта правильная точка зрения просуществовала не долго. При гистохимическом анализе кислот было обнаружено, что гигантские хромосомы не дают похожего аналитического эффекта с нуклеиновыми кислотами. Был сделан вывод о том, что не все хромосомы содержат нуклеин и он не может быть наследственным материалом. Долгое время таким материалом считали белки. А существовавшие в то время нуклеиновые кислоты подразделяли на растительные и животные (тимоаминокислоты).

История открытия. В 1936 г. советский ученый Белозерский доказал что в проростках конского каштана содержится тимонуклеиновая кислота, которая относится только к животным кислотам. Девидсон и Брамс доказали, что растительные нуклеиновые кислоты существуют и животных клетках. С 1936 г. стали различать дезоксирибонуклеи- новую и рибонуклеиновую кислоты.

История открытия. 1953 г. американские биохимики Дж. Уотсон и Ф.Крик установили расположение частей молекулы ДНК

Первичная структура нуклеиновых кислот. Под первичной структурой нуклеиновых кислот понимают порядок, последовательность расположения мононуклеотидов в полинуклеотидной цепи ДНК. Поскольку молекулярная масса нуклеиновых кислот колеблется в широких пределах (от 2•10(4) до 10(10)–10(11), установить первичную структуру ДНК весьма сложно. Тем не менее в одноцепочечной нуклеиновой кислоте имеется один и тот же тип связи – 3′,5′-фосфодиэфирная связь между соседними нуклеотидами. Эту общую основу структуры можно представить следующим образом:

Первичная структура нуклеиновых кислот. Установлено, что в образовании межнуклеотидной связи участвуют гидроксильные группы в 3′- и 5′-положениях остатков углевода. В настоящее время проводятся исследования первичных структур различных молекул ДНК. Около 15 лет назад была полностью расшифрована нуклеотидная последовательность митохондриальной ДНК человека (16569 пар нуклеотидов). Известны полные нуклеотидные последовательности ДНК ряда вирусов и плазмид Совсем недавно завершено определение нуклеотидных последовательностей геномов двух прокариотических организмов (Haemophilus influenzae и Mycoplasma genitalum) и появились сообщения о расшифровке генома первого эукариотического организма – дрожжей. Близки к завершению аналогичные исследования генома E.coli и генома нематоды Caenorhabditis elegans. Исследователи активно работают над полной расшифровкой генома человека.

Первичная структура нуклеиновых кислот. три варианта схемы нуклеотидной последовательности ДНК:

Строение ДНК. ДНК — полимер. Мономеры — нуклеотиды. Нуклеотид- химическое соединение остатков трех веществ: Строение нуклеотида Азотистые основания: — Аденин; — Гуанин; — Цитазин — Тимин Углевод: — Дезоксирибоза Остаток фосфорной кислоты (ФК)

Конформации компонентов нуклеиновых кислот. Все 5 гетероциклических оснований, входящих в состав НК, имеют плоскую конформацию. Для остатков рибозы и дезоксирибозы плоская конформация энергетически невыгодна. Среди многочисленных теоритически возможных конформаций этих остатков в полинуклеотидах выделяются только 2:

Син- и анти- конформации нуклеозидов В свободных нуклеозидах и нуклеотидах переход от C2`- эндо- к C3` — эндо- между син – и анти-конформациями происходит достаточно легко.

Макромолекулярная структура ДНК. В 1953 г. Дж.Уотсон и Ф.Крик предложили модель структуры ДНК. При постоении стуктуры ученые основывались на 4 группах данных:

Макромолекулярная структура ДНК. — правильная правовинтовая спираль, состоящая из 2 полинуклеатидных цепей, которые закручены друг относительно друга вокруг общей оси. — цепи имеют антипараллельную ориентацию — пиримидиновые и пуриновые основания уложены стопкой с интервалом 0,34 нм. — длина витка спирали – 3,40 нм. — стабильность цепи за счет водородных связей — наличие комплиментарных пар – основания,которые образуют пары, в которых они сочетаются водородными связями

Полиморфизм двойной спирали. Правые спирали образуют 2 семейства: А-семейство (конформация сахара С3`- эндо-) и В-семейство (конформация сахара С2` -эндо-). Структуры в пределах каждого из семейств в зависимости от условий (концентрации соли, температуры) могут иметь разное число пар, приходящихся на виток спирали.

А – семейство ДНК. Розалинда Франклин получила эксперементальные свидетельства существования весьма упорядоченной структуры в ориентированных вытягиванием и подсушенных волокнах ДНК. Эта структура получила название А-форма ДНК. Этой форме долгое время не придавали особого значения, т.к. она возникла при малой влажности, т.е. не при физиологических условиях.

А – семейство ДНК. С3`- эндоконформация сахара приводит к уменьшению расстояния между фосфатными группами и, следовательно, к уменьшению расстояния между нуклеотидными парами вдоль оси спирали. Это ведет к увеличению количества нуклеотидов на виток спирали (11 нуклеотидных остатков).

А – семейство ДНК. Пары оснований в А-форме образуют с осью спирали угол около 20 градусов и очень сильно отодвинуты от оси спирали к переферии молекулы: сдвиг достигает 0,4 – 0,5 нм, т.е. почти половину радиуса. Участвует в транскрипции и передаче информации от ДНК к РНК.

А – семейство ДНК.

В – семейство ДНК. Для этого семейства характерно структурное разнообразие. ДНК со случайными последовательностями могут находиться в В-,С-,D- и других конформационных состояниях. На структуру ДНК влияют тип и концентрация катионов, а также температура. На виток приходится 10 пар нуклеотидов. Участвует в репликативных процессах. С-форма в хранении информации.

Z – форма ДНК. Левоспиральная конформация ДНК. Она была открыта в 1979 г. при исследовании структуры гексануклеотида d(CG)3. Если полинуклеотид poly(dG-dC) поместить в водный раствор с высокой концентрацией MgCl2, NaCl или спирта, то образуется левая двойная спираль Z-ДНК . Повторяющейся единицей спирали является не пара нуклеотидов, а двойка соседних пар. В каждой из комплементарных нитей Z-ДНК происходит чередование син- и анти-конформаций нуклеотидных звеньев, а в каждой паре оснований одно всегда находится в син-конформации относительно гликозидной связи, другое — в анти-конформации.

Взаимодействия между гетероциклическими основаниями в нуклеиновых кислотах. 2 типа взаимодействия между гетероциклическими основаниями нуклеотидных остатков: взаимодействия м/у основаниями в комплиментарных парах и вертикальными межплоскостными взаимодействиями оснований,расположенными друг над другом (стэкинг взаимодействия) Кроме уотсон-криковских пар (A-T, G-C) гетероциклические основания способны образовывать множество связанными водородными связями пар другой структуры. Образование пар между двумя пуринами, двумя пиримидинами или некомплиментарными основаниями(A-C, G-T) стерически затруднено, что нарушает геометрию спирали.

Стэкинг – взаимодействия. — обусловлены ван-дер-ваальсовыми силами. Зависят от состава комплиментарных пар и от их последовательности

Описание презентации по отдельным слайдам:

Презентация к уроку ДНК Автор: Осенний Иван

Хромосомы — это носители информации в ядре клетки, состоящие из молекул ДНК (ДезоксирибоНукле- иновые Кислоты).

Молекула ДНК состоит из 2 полинуклеотидных цепей. Нуклеиновые кислоты представляют собой биополимеры, построенные из молекул-мономеров — нуклеотидов. Такие цепи состоят из четырёх азотистых оснований: -аденин, -гуанин, -цитозин, -тимин.

Нарушения последовательности нуклеотидов в цепи ДНК приводят к наследственным изменениям в организме — мутациям.

Строение азотистых оснований таково, что они идеально подходят друг к другу образуя прочные водородные связи: Аденин-тимин Гуанин-цитозин

В виде исключения, например, у бактериофага PBS1, в ДНК встречается пятый тип оснований — урацил ([U]), пиримидиновое основание, отличающееся от тимина отсуствием метильной группы на кольце, обычно заменяющее тимин в РНК[9].

ДНК — это нуклеиновые кислоты, содержащие в качестве углеводного компонента дезоксирибозу. ДНК является основной составляющей хромосом всех живых организмов; ею представлены гены всех про- и эукариот, а также геномы многих вирусов.

ГЕНОМ ГЕНОМ — совокупность генов, содержащихся в гаплоидном (одинарном) наборе хромосом данного организма. Диплоидные организмы содержат 2 генома — отцовский и материнский. Термин «геном» в современной генетике употребляют и по отношению к совокупности генов у бактерий, вирусов, органелл (митохондриальный геном, хлоропластный геном).

ПРОКАРИОТЫ Прокариоты — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром. Генетический материал в виде кольцевой цепи ДНК лежит свободно в нуклеотиде и не образует настоящих хромосом. К прокариотам относятся бактерии, в т. ч. цианобактерии (сине-зеленые водоросли), например Сцитонема

ЭУКАРИОТЫ Эукариоты – это организмы (все, кроме бактерий, включая цианобактерии), обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключен в хромосомах. Клетки эукариоты имеют митохондрии, пластиды и другие органоиды. Характерен половой процесс.

В нуклеотидной последовательности ДНК закодирована генетическая информация о всех признаках вида и особенностях индивидуума — ее генотип (наследственная конституция организма).

ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Фридрих был биологом, физиологом и гистологом, родом из Швейцарии.

Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных

В зависимости от концентрации ионов и нуклеотидного состава молекулы, двойная спираль ДНК в живых организмах существует в разных формах. На рисунке (слева направо) представлены A, B и Z формы

Чтобы скачать материал, введите свой email, укажите, кто Вы, и нажмите кнопку

Нажимая кнопку, Вы соглашаетесь получать от нас email-рассылку

Если скачивание материала не началось, нажмите еще раз «Скачать материал».


Статьи по теме