Перейти к содержанию

Электронная Проводимость Металлов Презентация 10 Класс

Электронная Проводимость Металлов Презентация 10 Класс.rar
Закачек 1716
Средняя скорость 9323 Kb/s
Скачать

Успейте воспользоваться скидками до 70% на курсы «Инфоурок»

Описание презентации по отдельным слайдам:

Экспериментальное доказательство существования свободных дви­жением свободных электронов, было дано в опытах Л. И. Мандельштама и Н. Д. Папалекси (1913), Б. Стюар­том и Р. Толменом (1916). Опыт: На катушку наматывают проволоку, концы которой припаивают к двум металличе­ским дискам, изолированным друг от друга (рис. 1) . К концам дисков при помощи скользящих контактов присоединяют гальванометр. Катушку приводят в быстрое движение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относи­тельно проводника по инерции и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тор­мозятся и упорядоченное движение частиц, образующее ток, прекращается.. Направление тока говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд про­порционален отношению заряда частиц, создающих ток, к их массе, т. е. Iq /m. Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8- 1011Кл/кг. Эта величина сов­падает с отношением заряда электрона к его массе е/т, найденным ранее из других опытов. ЭЛЕКТРОННАЯ ПРОВОДИМОСТЬ МЕТАЛЛОВ Носителями свободных зарядов в металлах являются электроны. Их концентрация велика — порядка 1028 1/м3 Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью концах проводника: l

U. В этом состоит качественное объ­яснение закона Ома на основе электронной теории проводимости металлов.

Движение электронов в металле. Электроны под влиянием по­стоянной силы, действующей на них со стороны электрического поля, приобретают определенную скорость упорядоченного движения. Эта скорость не увеличивается в дальнейшем со временем, так как со стороны ионов кристаллической решетки на электроны действует не­которая тормозящая сила. Эта сила подобна силе сопротивления, действующей на камень, когда он тонет в воде. В результате средняя скорость упорядоченного движения электронов пропорциональна на­пряженности электрического поля в проводнике v—Е и, следовательно, разности потенциалов на концах проводника, так как E=U/l, где l — длина проводника. Cила тока пропорциональна разности потенциалов на концах проводника: l

U. В этом состоит качественное объ­яснение закона Ома на основе электронной теории проводимости металлов.

движения электронов в металле на основе законов классической механики не­возможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для опи­сания этого движения. Наиболее наглядно это видно из следующего примера. Если экспериментально определить среднюю кинетическую энер­гию теплового движения электронов в металле при комнатной тем­пературе и найти соответствующую этой энергии температуру по формуле m•v/2=3/2 K•T, то получим температуру порядка 105—106 К.. Такая температура существует внутри звезд. Движение электронов в металле подчиняется законам квантовой механики. Вывод: Экспериментально доказано, что носителями свободных зарядов в металлах являются электроны. Под действием электрического поля электроны движутся с постоянной средней скоростью из-за тормо­жения со стороны кристаллической решетки. Скорость упорядочен­ного движения прямо пропорциональна напряженности поля в про­воднике.

ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ ПРОВОДНИКА ОТ ТЕМПЕРАТУРЫ Различные вещества имеют различные удельные сопротивления . Зависит ли сопротивление от состояния проводника; от его температуры? Ответ должен дать опыт. Опыт: Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать ее в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется. Если при температуре, равной О°С, сопротивление проводника равно R0, а при температуре t оно равно R, то относительное из­менение сопротивления, как показывает опыт, прямо пропорциональ­но изменению температуры t: R-R0/R= α•t (1) Коэффициент пропорциональности α называют температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры. Температур­ный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К. Для всех металлических проводников α >0 и незначительно меняется с изменением температуры.

Сверхпроводимость Сопротивление проводников зависит от температуры. Сопротив­ление металлов уменьшается с уменьшением температуры. Что про­изойдет при стремлении температуры к абсолютному нулю? В 1911 г. голландский физик Камерлинг-Оннес открыл замеча­тельное явление — сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля. Это явление было названо сверхпроводимостью. Позже было открыто много других сверхпроводников. Сверхпроводимость наблюдается при очень низких температу­рах — около 25 К.Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем устранить источник электрического тока, то сила этого тока не меняется сколь угодно долго. В обычном же несверхпроводящем проводнике электрический ток в этом случае прекращается. Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые со­здают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь выделения теплоты в сверхпроводящей обмотке не происходит. Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая сверхпроводящего состояния, нельзя. Сверхпроводящие магниты используются в ускорителях элементарных частиц, магнитогидродинамических генераторах, преобразующих механическую энергию струи раскаленного ионизованного газа, движущегося в магнитном поле, в электрическую энергию.

Если бы удалось создать сверхпроводящие материалы при тем­пературах, близких к комнатным, то была бы решена важнейшая техническая проблема — передача энергии по проводам без по­терь. В настоящее время физики работают над ее решением. Объяснение сверхпроводимости возможно только на основе кван­товой теории. Оно было дано лишь в 1957 г. американскими учеными Дж. Бардиным, Л. Купе ром, Дж. Шриффером и советским ученым, академиком Н. Н. Боголюбовым. В 1986 г. была открыта высокотемпературная сверхпроводимость. Получены сложные оксидные соединения лантана, бария и других элементов (керамики) с температурой перехода в сверхпроводящее состояние около 100 К. Это выше температуры кипения жидкого азота при атмосферном давлении. Высокотемпературная сверхпроводимость в недалеком будущем приведет наверняка к новой технической революции во всей электротехнике, радиотехнике, конструировании ЭВМ. Сейчас прогресс в этой области тормозит необходимость охлаждения проводников до температур кипения дорогого газа — гелия. Вывод: Многие металлы и сплавы при температурах ниже 25 К полностью теряют сопротивление — становятся сверхпроводниками. Недавно была открыта высокотемпературная сверхпроводимость.

Презентация была опубликована 4 года назад пользователемЛиана Скурлыгина

Похожие презентации

Презентация на тему: » Сверхпроводимость; Температурный коэффициент сопротивления; Электронная теория проводимости металлов.» — Транскрипт:

2 Сверхпроводимость; Температурный коэффициент сопротивления; Электронная теория проводимости металлов.

3 Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.

4 Л. И. Мандельштам и Н. Д. Папалекси (1913 г.); В 1916 году американский физик Р. Толмен и Б. Стюарт (1916 г.).

5 На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны.

6 По современным данным модуль заряда электрона (элементарный заряд) равен а его удельный заряд есть

7 средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения скорость распространения тока равна скорости распространения электрического поля в пространстве – км/с

8 Vд = 0,6–6 мм/c V T = 10 5 м/с.

9 R = R 0 (1 +α t) α – температурный коэффициент сопротивления: равен относительному изменению сопротивления проводника при его нагревании на 1 0 С температурный коэффициент сопротивления химически чистых металлов равен 1/273 град -1

10 Открыто датским физиком Х. Каммерлинг- Оннесом в 1911 году. При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К.

11 а– нормальный металл в — сверхпроводник

12 Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи.

13 В 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К). Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью. В 1988 году было создано керамическое соединение на основе элементов Tl–Ca–Ba–Cu–O с критической температурой 125 К.

14 В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями Tкр. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей.

Сочетание научной информации с интеллектуальными шутками – находка, а не презентация. Известное правило «приятное + полезное» работает на ура и его можно наблюдать в деле.

Презентация «Электронная проводимость металлов» рассказывает о создании классической электронной теории проводимости металлов, экспериментальном ее доказательстве, определяет суть электрического тока, выводит термин электронной проводимости, уделяет время сопротивлению металлов. Многие из объяснений в этом проекте сопровождаются иллюстрациями.

Не забыла в проекте и сверхпроводимость, в честь которой говорится о Джоне Бардине, Леоне Н. Купере и Джоне Р. Шриффере. О Беднорце и Мюллере рассказывается на последних слайдах презентации, зато подробно. Проект разнообразили картинками, удачным декором, и шутками и мемами в самом начале.


Статьи по теме